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Abstract 

On the basis of findings from an experiment with 6-year-old 
children we show a proposal for a cognitive model of 
representational shifts in learning the number line. The 
findings from the experiment provide information on 
number line estimation - that is, translating a number to a 
spatial position on a number line. Though the experiment is 
a replication of an experiment done by Siegler and Ramani 
(2008) where they concluded with a logarithmic to linear 
shift, we could not find logarithmic representation of the 
results from any of our subjects. What we find is anchor 
points as important for improvement on learning the number 
line.  

Keywords: Learning; numerical magnitudes; number line; 
dynamic decision making; memory; cognitive architectures; 
ACT-R. 

Introduction 

In this paper we present a model of the learning process 

involved when dealing with the estimation of what position 

a number value has on a number line. 

The learning sequence involved is the one that Siegler 

calls the logarithmic-to-linear shift in representations of 

numerical magnitude (Siegler, Thompson, & Opfer, 2009).  

Siegler et al (2009) show that children undergo parallel 

changes from logarithmic to linear representation on 

numerosity estimation tasks. 

 
Parallel Changes 

 
Figure 1. The logarithmic to linear shift. From Siegler, 

Thompson, & Opfer, (2009), Copyright 2009 Wiley. 

Reprinted with permission.  

 

The example we have reused from their article in figure 

1 shows long-term changes in estimation of whole number 

magnitudes. (A) On 0–100 number lines, kindergartners’ 

estimates were better fit by the logarithmic function than 

by the linear, whereas second-graders’ estimates were 

better fit by the linear function than by the logarithmic; (B) 

On 0–1000 number lines, second-graders’ estimates were 

better fit by the logarithmic function than by the linear, 

whereas fourth-graders’ estimates were better fit by the 

linear function than by the logarithmic. 

The explanation by Siegler et al. was challenged by 

others (Barth & Paladino, 2011). They point out that one of 

the challenges of putting a number on the number line is to 

have a sense of proportion: what exactly is the length of a 

single unit? This is not a trivial question for children that 

do not yet have a sense of what division is.  

 Our own earlier work also showed that a simple Weber 

explanation of the learning sequence of the logarithmic to 

linear shift does not hold as a complete explanation (Lende 

& Taatgen, 2011). We proposed that a possible account for 

the transition towards a linear representation is that 

children learn the location of particular points on the 

number line. Schneider et al. (2008) showed that the 

distribution of fixations on the number line for all three 

groups of first grade, second grade and third grade children 

are concentrated around beginning, midpoint and ending of 

the number line, suggesting that at least these three points 

are represented separately (Figure 2). 
Distribution of fixations 

 

 
Figure 2: Distribution of fixations on the number line (left: 

first grade; middle: second grade; right: third grade). From 

Schneider et al. (2008), Copyright 2008 Elsevier. 

Reprinted with permission.  

 

In addition, their work shows that from grade 1 to 3 

children tend to increasingly focus on the correct positions 

on the number line while solving the estimation tasks. . 

Because of the mentioned challenges to the explanation 

of Siegler et al. and that it is hard to see from aggregated 

data what is going on with individuals; we have designed 

our experiment as a replication of Siegler and Ramani 

(2008) with the goal to look at individuals and the goal to 

build a model.  

The number line estimation task 

The experiment is a replication of a study by Siegler and 

Ramani  (2008) among preschool children from low 
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income families. Siegler and Ramani found a striking 

improvement in number-line performance in the children 

after they had played a board game involving counting, but 

not on a board game involving colors. 

The Outline of the experiment 

The experiment consisted of four elements: a pretest, a 

training program of two weeks, a posttest and finally a 

second post test to measure long-term learning. We will 

not discuss the results of the second post test here. 

After the pretest, the sample group was provided with the 

same training program as Ramani and Siegler used for 

their test of preschoolers (Siegler & Ramani, 2008). 

Children met one-on-one with an experimenter for four 15-

minute sessions within a 2-week period. After the 2 weeks 

the first posttest was conducted. Then after seven new 

weeks a second posttest was conducted. All tests are the 

same. 

The Method of the three tests 

Participants 
Participants were 39 Norwegian children in their first year 

of school, so-called preschool, with no experience with 

number lines. All of them are born in 2004 and recruited 

from the same municipality, Gjesdal. 17 of them are 

recruited from Solås School, 7 from Dirdal School and 15 

from Bærland School. The population at these schools is 

mixed, but at Bærland with a larger representation of 

bilingual children, Norwegian not being their mother 

tongue. 21 of the participants participated in the 

experiment while the rest of them acted as a control group.  

 

Materials 

Stimuli for the number line estimation task were two stacks 

of 10 sheets of paper, each with a 25 cm long line arranged 

horizontally across the page, with ‘0’ just below the left 

end of the line, and ‘10’ just below the right end. A 

number from 1 to 10 inclusive was printed approximately 3 

cm above the center of the line, with each number printed 

on one of the 10 sheets in each stack. The order of the 

sheets in the stack was randomized.  

 

Procedure 

The test is conducted as a teacher to student task: 

 The teacher or student pulls a sheet from the stack. 

 The teacher says: “Here is the number [number that is 

on the pulled sheet]. And here you see a line that 

starts with 0 and ends at 10. Where on this line is the 

correct position for the number you see? Put a mark 

with your pencil”. 

 The student makes a mark where he or she thinks the 

number should be positioned. There is no time 

constrain for the subject to fulfill the task. 

The task is carried out with all the sheets in the first 

stack. Then the task is continued in the same way with the 

second stack. In this way the numbers from 1 to 10 

inclusive were presented twice in random order, with all 

numbers presented once before any number was presented 

twice. No feedback was given, only general praise and 

encouragement.  

Method of the Board Game 

In the training program between the pretest and the first 

posttest the subjects played a board game using a play 

button to move along a line of squares from square to 

square.  

 

Materials 

The board game for the experiment group shown in figure 

3 consists of a number line with numbers in colored 

squares from 1 to 10 with a blank square as starting 

position for the game.  

 

 
Figure 3. The Game board for the experiment group 

 

Beneath the number line there is a circle with a spinner. 

(The spinner is not shown on the figure) In each quarter of 

the circle the numbers one or two is printed. 

 

The board game for the control group consists of a similar 

line of squares, but with no numbers as shown in figure 4. 

 

 
Figure 4. The Game board for the control group 

 

Beneath the line of colored squares there is a circle with a 

spinner. (The spinner is not shown on the figure) Each 

quarter of the circle is painted with different colors 

corresponding to the colors used in the line of squares. 

 

Procedure 

The subjects trained with their board games for 15 minutes 

twice a week for 2 weeks.  



When a subject of the experiment group turns the 

spinner the player moves his play button as many squares 

as the spinner tells (1 or 2 steps) while saying out loud the 

numbers in the squares he steps on. 

When a subject of the control group turns the spinner the 

player moves his play button to the first square on the line 

of squares that is painted with the same color as given by 

the spinner. 

 

Result and discussion 

Figure 5 and 6 show the mapping between numbers and 

positions on the number line that we found in the pretest 

and the first posttest of the experiment. Performance is on 

average reasonably good.   

It is surprising that where the curve differs from linear, it 

is not towards a logarithmic curve, but in the opposite 

direction.. 

 
Figure 5. The figure shows the average result of the control 

group positioning the numbers on the number line. Points 

are plotted with error bars. 

 

 

 
Figure 6. The figure shows the average result of the 

experiment group positioning the numbers on the number 

line. Points are plotted with error bars. 

 

The fact that the results are neither linear nor logarithmic 

is surprising. Inspections of individual subjects (see Figure 

8 later in the paper) show that individual estimates have 

strong linear trends, only not with the right slopes. This 

suggests that subjects use some sort of counting strategy, 

but with a counting unit that is not a tenth of the whole 

line, but rather a smaller unit.  

Figures 5 and 6 suggest that the experimental 

manipulation was indeed successful. To analyze this we 

performed a two-way Anova with the summed error as the 

dependent variable and condition and pre- vs. posttest as 

independent variables. This produces an interaction effect 

between condition and test, F(1,1441)=6.02, p=0.014, and 

a main effect of test, F(1,1441)=7.84, p=0.005, but no 

main effect of condition, F<1. This means that the 

experimental group does indeed improve more on the 

posttest than the control group. Figure 6 shows that this 

improvement is mainly on the numbers 5 through 8.  

To have a better picture of individual differences in the 

learning process, we used the k-means clustering algorithm 

(MacQueen, 1967) with as input the difference between the 

pre- and post-test of the accuracies of each of the ten 

numbers. The result of the cluster analysis of this 

combined group of both experiment group and control 

group indicates that there are two different patterns of 

improvement: one for numbers around five and six, and 

one for the numbers around eight (Figure 7).  

Individuals in the first cluster (red circles) include six 

subjects from the experiment group and only two from the 

control group. This indicates that several more individuals 

in the experiment group have made improvement on the 

numbers 5-7 than those in the control group. The second 

cluster (green triangles) corresponds to no or little 

improvement, and includes 13 subjects from the control 

group and 8 subjects from the experiment group. And in 

the third cluster (black plus signs) there are three subjects 

from the control group and five from the experiment 

group.  

 

 
Figure 7. The graph shows the result of the cluster analysis 

on the improvement of distance from a true linear 

representation between pretest and posttest. Positive values 

indicate improvement and negative values the opposite.  
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To conclude, the data tell us a number of things. First, 

some sort of counting seems to be used to arrive at a point, 

but not with the correct counting unit. Second, 

improvements in performance seem to be centered around 

the middle point of the number line and towards the end of 

the number line, but hardly at the beginning. This suggests 

that subjects do not improve the length of their counting 

unit, but rather in the way they use it. Improvements 

around the middle of the number line suggest they learn 

that five is in the middle of the line and can be used as a 

starting point for counting. Improvements towards the end 

of the line suggests subjects learn that the higher numbers, 

7 and 8 in particular, are close to 10, so that counting back 

from 10 is a better strategy than counting up from zero.  

The model 

A possible model of progressing towards a linear time 

scale can therefore be one that increasingly learns the 

locations of particular points on the number line, and uses 

those as anchors to determine the points that it does not 

know. It therefore needs some sort of representation of the 

positions of anchor points, but also a method for 

determining points in between those anchors by counting.  

As a theory of how anchor points are stored in memory, 

we use ACT-R's declarative memory (Anderson, 2007). In 

order to determine positions between the anchor points, we 

use two mechanisms. The first one is a retrieve function 

that decides which anchor point will be the starting point. 

The second one is a count mechanism that uses a count 

unit to count up or down from the starting point to decide 

the position for the number on the number line. The initial 

size of the count unit is decided by average size from real 

data and randomly varies in size according to variation 

found between subjects in real data.  

  

The details of the model 

The basic assumption of the model is that the subjects 

already know how to count from 1 to 10, but that they have 

incomplete knowledge of how to put those numbers on the 

number line. An anchor point represents knowledge about 

putting numbers on the line and is expressed by 

associations between a number and a position on the line. 

In most cases this knowledge only consists of the number 

zero and the number ten on the extreme ends of the line, 

but may also consist of the middle point five. 

To represent the different levels of knowledge about 

numbers and anchor points, we vary the base-level 

activation of the chunks associated with them.  

If the model has to put a particular number on the 

number line, it tries to retrieve an anchor point from 

declarative memory for the number. If there is no direct 

match between any of the available anchors, to process of 

partial matching will retrieve the anchor point that has the 

highest activation. This activation depends on two aspects: 

the base-level activation of that anchor, and its similarity to 

the request number. So if the model tries to retrieve the 

number 6 and only 0 and 10 are available as anchors, the 

model might retrieve 10 because it is closer to 6, but also 0 

because that point has a higher base-level activation. 

Whenever the model retrieves an anchor that is not 

already the number that it is trying to retrieve, it will apply 

counting to reach the desired point on the line. However, 

the unit of counting, following our data, is smaller than an 

actual tenth of the length of the line (0.42 cm ± 20%). 

By simply varying the base-level activations of the 

anchors, we can reproduce most of the patterns of 

responses that we see in the data.  

The model has an activation baseline function and there 

are three functions dealing with the declarative memory.   

One function makes a reference list of numbers involved 

and their position on the number line. A chunk is 

represented as a list, with a number (what number is it 

about) and a position (where is it on the number line), and 

a reference list with moments in time the chunk has been 

accessed. 

The mismatch function is based on Weber’s law, and the 

result value is zero, a negative value or a positive value 

depending on whether the first number is similar, smaller 

than or larger than the second number. The mismatch 

assumes two numbers are more similar if they are closer 

and higher and is used to calculate the activation of a 

chunk. 

A retrieval function is performing the retrieval and adds 

noise. Because of that we do not use the regular ACT-R 

retrieval rule and noise activation function.  

Another function takes care of the counting procedure. 

The counting unit has an initial length correlating to the 

mean of the length of count units found in the real life data 

set from our experiment. The length of this unit is 

randomly shorter or longer for each individual simulation 

according to variation found in real life data. The same is 

done with the count unit for each count step.  

In this same function simple proportioning is 

implemented the way that proportioning is activated after 

simulation of an individual’s trial number 150. 

Results from running the model and discussion 

When we run the model simulating a subject doing a 

certain number of trials, basic-level activation is not 

increased after every trial. The trials represent the training 

with the board game in real life. We assume that only after 

dozens of times of playing this game a subject obtains the 

kind of new crucial knowledge that makes a shift in 

numerical representation on the number line. This new 

knowledge could be that the position of a certain number is 

either at the beginning or at the end of the number line. In 

our experiment those numbers are 1 (or 0) and 10, the start 

point and the endpoint. So for the number at the endpoint 

there is no need for counting upwards from 0 anymore. We 

have got what we call a representational shift and the 

number at the endpoint has got a stronger activation as 

anchor point.  That is why we let the model also run 

dozens of trials before each increase of base-level 

activation. The increase of base-level activation is done by 



adding entries in the chunk for the appropriate anchor 

point. 

Another example of such a representational shift is when 

a subject realizes that one or several numbers are close to 

10 and counting downwards from 10 is how to position 

those numbers on the number line.  

To what extent those shifts in knowledge represent 

different levels of knowledge is not clear, but we have 

made the assumption from our rather limited amount of 

real data that it could be that the first shift for children that 

have already learned to count, is to learn that the endpoint 

of the line is useful as an anchor point. In our experiment 

that is 10. Next is that some numbers are close to ten, then 

that five is an anchor point, and last, that the counting unit 

has to be adapted to a reasonable size. Plotted images show 

the relation and progress between these shifts. And we can 

easily find related and rather similar images to each of 

those steps from values of individuals from empirical data, 

when plotted (See figure 8).  

 

8 a)   

8 b)   

8 c)  

8 d)   

8 e)   

  

Figure 8 Model result from typical levels shown by model 

to the left and corresponding example from real data to the 

right: a): 1(or 0) is the only anchor point. b): Now knowing 

10 as anchor point, c): Now knowing 10 even better, d): 

also knowing 5 as anchor point. e): Proportioning is 

activated. 

 

When it comes to at what point a shift in knowledge 

should occur, in the model we have defined an amount of 

trials that we from our real data think is reasonably close to 

what we could find in real life. 

A prior level of knowing how to represent numbers on 

an empty number line is of course when a child does not 

know how to do it at all. Siegler and Ramani (2008) show 

that even those at this prior level learned to deal with the 

number line during training with the board game. But for 

our model we have defined as the initial level when 

children know where 1 (or 0) is at the number line, and use 

counting only as strategy for putting other numbers on the 

right position. 

The initial level, shown in figure 8 a),  is a level where 

only counting is involved and base-level activation only on 

the chunk for the number 1 as an anchor point with a value 

of 1,15. In this case the chunk for 10 only has a base-level 

activation of -0,458.  

At the next stage, shown in figure 8 b), which is after 60 

trials, the base-level activation for the chunk of the number 

1 is unchanged but for 10 it is increased to 0,640  The 

model now simulates where the anchor point 10 is, just like 

the subject GJ0030 at Pretest now knows where it is. .  

After 100 trials we assume that a new shift occurs, 

shown in figure 8 c), Now the base level-activation for 1 is 

increased to 1,333 and for 10 to 0,928. Just like the subject 

GJ0202 in Posttest1 now knows, the model now simulates 

that 8 and 9 is close to 10 and positions those numbers by 

counting down from 10 as anchor point. The next shift will 

occur in the model after 150 trials, shown in figure 8 d). 

Base-level activation for 1 is unchanged, for 10 it is 

increased to 1,151. The number 5 now, as a new anchor 

point, has a base-level activation of 1,151. And the model 

now simulates knowing the midpoint, which is five, as 

anchor point. In real life data we find a close case in 

subject GJ0039 at Posttest1.  

The last shift implemented in our model so far, shown in 

figure 8 e), is when a subject obtains knowledge about the 

need for, and how to, adapt the counting unit to the most 

suitable size, In this case the base level activation is 
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unchanged for all three anchor points, but proportioning of 

the counting unit is activated with some random errors.  

The proportioning function of the model is rather 

preliminary and simply divides the physical length of the 

number line with the amount of numbers on line, which is 

10 for this actual experiment, and adjusts it for error by 

randomizing according to what we find in real life data. 

Young children, as those in our experiment, do normally 

not obtain this level, and our experiment does not give us 

data for this. But we assume that what happens in real life 

is that finding a close to perfect size of the counting unit, is 

obtained either during training by trial and error or by 

dividing the line length in halves or thirds, one or several 

times.  

In our data it seems that all of the subjects who 

understand the task use counting as an important part of 

the strategies for estimation. As we can see, in the same 

way as the results of our collected data from 6 year old 

children showed, we obtain no logarithmic curve from 

running our model. If we investigate the physical size of 

the unit used by the subjects in counting up or down from 

an anchor point, it is for all of them much smaller than a 

tenth of 25 cm, which was the length of the number line 

used in the estimation task. But on the opposite, with a 

larger scale, for example up to 100, the child’s unit will be 

too large, and counting will often lead to a logarithmic 

curve like Siegler and others has found.  

This shows that for the counting strategy, most of the 

subjects do not have a clear clue of what the size of a unit 

should be.  

A last comment to our model, is that obviously there are 

moments between those representational shifts that we 

have built our model on so far, where subjects in real life 

obtain brick stones of knowledge that prepare for the 

shifts. For example we assume that when playing the board 

game and moving from number to number, the subjects 

learn connections between numbers. And the activation of 

those connections may be strengthened almost every time 

they play the game. This issue is in focus for further 

development of the model. 

Conclusion 

From our findings in real data we have concluded that a 

logarithmic scale for a representation of the result of a 

number line task depends on the proportion between the 

counting units the individual uses and the length of the 

empty number line. In our experiment the unit is too small 

to lead to a logarithmic representation. 

We found that what they actually learn from training 

with the board game, are that higher numbers are close to 

10 and that 5 and 6 are approximately in the middle of the 

line. 

It does not make sense to show average data from the 

real life data set, because the individuals are so different. 

However, we can find shifts in learning levels in different 

individuals. 

Those different shifts are easily simulated by our model. 
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