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Abstract: Sepsis is a dysregulated host response to infection that causes potentially life-threatening
organ dysfunction. We investigated the serum metabolomic profile at hospital admission for patients
with bacterial sepsis. The study included 60 patients; 35 patients fulfilled the most recent 2016
Sepsis-3 criteria whereas the remaining 25 patients only fulfilled the previous Sepsis-2 criteria
and could therefore be classified as having systemic inflammatory response syndrome (SIRS). A
total of 1011 identified metabolites were detected in our serum samples. Ninety-seven metabolites
differed significantly when comparing Sepsis-3 and Sepsis-2/SIRS patients; 40 of these metabolites
constituted a heterogeneous group of amino acid metabolites/peptides. When comparing patients
with and without bacteremia, we identified 51 metabolites that differed significantly, including
16 lipid metabolites and 11 amino acid metabolites. Furthermore, 42 metabolites showed a highly
significant association with the maximal total Sequential Organ Failure Assessment (SOFA )score
during the course of the disease (i.e., Pearson’s correlation test, p-value < 0.005, and correlation
factor > 0.6); these top-ranked metabolites included 23 amino acid metabolites and a subset of
pregnenolone/progestin metabolites. Unsupervised hierarchical clustering analyses based on all
42 top-ranked SOFA correlated metabolites or the subset of 23 top-ranked amino acid metabolites
showed that most Sepsis-3 patients differed from Sepsis-2/SIRS patients in their systemic metabolic
profile at the time of hospital admission. However, a minority of Sepsis-3 patients showed similarities
with the Sepsis-2/SIRS metabolic profile even though several of them showed a high total SOFA
score. To conclude, Sepsis-3 patients are heterogeneous with regard to their metabolic profile at the
time of hospitalization.

Keywords: sepsis; metabolism; metabolomics; bacteremia; organ failure; SOFA score

1. Introduction

Sepsis is a common disease with high mortality and for many survivors long-term
morbidity [1]. It is defined as life-threatening organ dysfunction caused by host responses
to various infections, and the organ dysfunction is classified according to the Sequential Or-
gan Failure Assessment (SOFA) score [2,3]. A subset of these patients develops septic shock
with profound circulatory/cellular/metabolic dysfunctions and increased mortality; these
patients are also characterized by vasopressor requirement and increased serum lactate
without hypovolemia [1–3]. Furthermore, sepsis is associated with metabolic modulations
including mitochondrial dysfunction with altered energy metabolism and production of
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reactive oxygen species [3], and these dysfunctions are possibly involved in the develop-
ment of organ failures. Finally, cellular metabolism is also important in the regulation of
immunity and inflammation, and modulation of the systemic metabolic regulation can
therefore influence inflammatory reactions through effects on the metabolic profile of the
microenvironment of cells involved in the regulation of immunity and inflammation [4–15].

Severe infections often induce an initial acute phase reaction, i.e., a reaction mediated
by proinflammatory cytokines and characterized by altered systemic levels of various acute
phase proteins (e.g., increased C-reactive protein (CRP) levels, decreased albumin levels)
due to the effects of inflammation on distant organs, especially the liver where many of
these proteins are synthesized but also their local release at inflammatory sites [16,17].
Sepsis should be regarded as a systemic complication to (at least initially) a local infection
involving distant organs [1–3]. Sepsis-induced or associated systemic metabolic modula-
tions detected in serum/plasma may thus reflect effects of local infection/inflammation on
distant organs similar to the acute phase reaction [16–20], development of various organ
dysfunctions [3] and/or the metabolic status/requirements of inflammatory cells at the
site of the infection. In this context, we have characterized the metabolomics profiles of
patients with bacterial sepsis at the time of hospital admission before the start of any (an-
tibiotic/supportive) treatment. The diagnostic criteria for systemic inflammatory response
syndrome (SIRS) and the most recent definition of sepsis (later referred to as Sepsis-3) have
been described elsewhere [1–3], and in our present study we therefore have a focus on the
heterogeneity of SIRS/sepsis patients rather than metabolomic differences between sepsis
patients versus healthy controls [20].

2. Materials and Methods
2.1. Patients

The study was approved by the Regional Ethics Committee (REK Vest Norway 214849),
and conducted in accordance with the Declaration of Helsinki. Written informed consent for
study participation was provided for all patients. The patients received written information
about the study when they arrived to the emergency department, and the written informed
consent was then signed. For a small minority of severely ill patients, the informed consent
was given by the patients’ closest relative/next of kin. Our routines for information and
informed consent are consistent with the approval of the Regional Ethics Committee.

Our present study is based on a previous prospective study at Haukeland University
Hospital, which is a tertiary hospital in western Norway that also functions as a local
emergency hospital for approximately 300,000 inhabitants [21]. Adult patients admitted
with sepsis to the emergency department between December 2012 and 2014 were included,
and a total of 164 consecutive patients were then admitted with clinical sepsis according
to the Sepsis-2 criteria (Figure S1) [22]. However, only 80 of these patients were immuno-
competent patients with a later documented bacterial infection and fulfilling the Sepsis-2
criteria at the time of admission [1–3]. Patients with viral and parasitic infections, those
without proven infections, immunocompromised patients (i.e., known congenital or ac-
quired immunodeficiency), as well as patients receiving immunosuppressive/cytotoxic
treatment, were excluded.

• Our present study included 60 patients with bacterial sepsis; 30 patients had infections
with Gram-positive and 30 patients with Gram-negative bacteria. We wanted to
include 30 patients in each of these two groups to allow reliable bioinformatical
comparisons between various patient subsets. Thus, our present study included
only 60 out of the 80 patients in the original study that fulfilled the Sepsis-2 SOFA
score-based criteria [21]. The 20 excluded patients were:

• Five patients with mixed infections, i.e., evidence for two infecting bacteria.
• Eight patients with exceptional bacterial etiology, i.e., one patient each with Enterobacter

cloacae, Acinubaculum schalii, Bacteroides fragilis, Fusobacterium necroforum, Kingella
kingae, Neiseria meningitidis, Klebsiella pneumoniae and Clostridium infection.
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• Six (randomly selected from eight) patients for which the bacterial diagnosis was
based on detection of bacterial antigens alone but with no bacterial growth for any
patient samples.

• One randomly selected patient with Gram-negative infection (Escherichia coli blood
culture) that was removed so that we had two equal groups with 30 patients with
Gram-negative and Gram-positive infection, separately.

Thus, 19 of the original 80 Sepsis-2 patients were left out to have more homogeneous
but still representative patients for the Gram-negative/positive comparison. One additional
randomly selected patient was also left out. The remaining 60 patients allowed reliable
comparisons of patients with and without bacteremia (30 versus 30 patients) and patients
with severe inflammatory response syndrome (25 SIRS or Sepsis-2 patients; see separate
description below) versus patients with organ dysfunction/failure (Sepsis-3 patients; 35 of
the 60 patients).

Fifteen patients with Gram-positive and 15 patients with Gram-negative infection
included in our present study had bacteremia, and these 30 patients were significantly older
than the patients without a blood stream infection (median age 69.5 versus 60 years, Mann
Whitney U test, p = 0.035). Furthermore, a major difference between patients with Gram-
negative and Gram-positive infections was the site of the infection; the majority of patients
with Gram-negative infections had urinary tract infections (26/30) whereas patients with
Gram-positive infections had mainly respiratory (8/30) or soft tissue infections (11/30).
Patients with Gram-negative infections had a higher age (median 73.5 versus 60 years,
p = 0.043). Finally, our patients with Sepsis-3 and bacteremia included 12 elderly patients
with cardiovascular comorbidity.

The total SOFA score was calculated regularly during the hospital stay, and the informa-
tion used for this scoring was also documented in the patient journal. In the present study, we
refer to the maximal SOFA score documented during the clinical course/hospital stay [23].
Thus, the SOFA score was determined before and independent of the present study.

We classified our patients according to the Sepsis-2 [1] and Sepsis-3 definitions [22,23].
All 60 patients included in the present study fulfilled the Sepsis-2 criteria (i.e., criteria
corresponding to SIRS), whereas only 35 patients fulfilled the Sepsis-3 criteria (i.e., based
on SOFA definitions). Furthermore, the presence of organ failure at the time of hospital
admission according to the Sepsis-3 definition (35 patients out of the 60 patients) and
the detection of bacteremia (30 patients) showed a highly significant association (Fisher’s
test, p = 0.0002). Finally, for the 35 patients with Sepsis-3/organ dysfunction, the subsets
with Gram-negative and Gram-positive infections did not differ significantly with regard
to their total SOFA score or the frequency of bacteremia (data not shown). The clinical
characteristics of Sepsis-3 and Sepsis-2 patients are compared in Table S1.

The total SOFA scores that are referred to throughout the text, represent the highest
score during the hospital stay/treatment period. Our study showed a low mortality with
only 3 patients dying within the first four weeks after hospitalization. All three patients
fulfilled the Sepsis-3 criteria; and the overall mortality for these patients corresponding to
11.6% is as expected for Sepsis-3 patients [23].

2.2. Metabolomic Analyses

Blood samples were derived at the time of admittance to the emergency department
of the hospital. Serum was prepared, aliquoted and transferred to storage at −80 ◦C
within 90 min after sampling, and the samples were later stored frozen at −80 ◦C until
analyzed without repeated thawing and freezing of any sample. Thus, we followed highly
standardized procedures for sampling, sample preparation and sample storage, but due
to the time of sampling at admittance to hospital before any kind of further treatment the
samples could not be standardized with regard to food intake or diurnal variations.

Metabolomic analyses were performed by using the HD4 Analysis Platform of Metabolon
(Morrisville, NC, USA). A more detailed description of this methodology is included at the
end of the Supplementary information (pages 38–42). For certain metabolites, certain patients
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showed undetectable levels; these levels were set to be equal to the lowest detectable level in
the statistical and bioinformatical analyses.

2.3. Statistical and Bioinformatical Analyses

Following log transformation and imputation of missing values with the minimum
observed value for each metabolite, Analysis of Variance (ANOVA) contrast was used to
identify metabolites that differed significantly between the various patient subsets. Fisher’s
exact test was used for comparison of categorized data, and the Mann-Whitney U-test was
used for comparison of continuous data using GraphPad Prism v9.4.1 (Boston, MA 02110,
USA). The Pearson’s test was used for correlation analyses. The binomial test for single
proportion was also used and Benjamini-Hochberg analysis was used as a correction for
the analysis of multiple single metabolites.

We used hierarchical clustering analyses for bioinformatical analysis of patient het-
erogeneity [21]. Briefly, these were performed using the J-Express software (MolMine AS,
Bergen, Norway, http://jexpress.bioinfo.no/site, accessed on 31 November 2022). The
mediator values were initially log10 and Z-transformed for standardization of the data
before clustering. Our analyses were based on the combination of Euclidean distance and
complete linkage because this methodological approach gave the best homology between
mediator concentrations and the most compact clusters.

Pathway enrichment analysis displays the number of statistically significantly different
metabolites relative to all listed metabolites in a subpathway, compared to the total number
of statistically significantly different metabolites relative to all detected metabolites in all
other pathways. A pathway enrichment value greater than one indicates that a pathway
contains relatively more altered metabolites than all the other pathways together. A list of
all metabolic pathways examined (i.e., subgroups) is given in Table S2.

3. Results
3.1. Identified Lipid Metabolites in Serum Samples Derived from Sepsis Patients

We detected a total of 1039 different metabolites in our serum samples; 1011 metabolites
were identified but 28 of them were only partially characterized. Detectable levels for at least 54
(90%) of the patients were observed for 660 of these metabolites, and 73 additional metabolites
showed detectable levels for at least 48 (80%) of the 60 patients included in the study.

We used principal component analyses (see Supplementary Information) to analyze
our overall results, but these analyses could not be used to separate Sepsis-3/Sepsis-2
patients or patients with and without bacteremia (data not shown).

3.2. Comparison of Metabolomic Profiles for Sepsis-3 Patients versus Patients only Fulfilling the
Criteria for Sepsis 2: Differences of Amino Acid Metabolite Levels Is a Main Characteristic

We compared the systemic levels of all detectable metabolites for the 35 patients
fulfilling the Sepsis-3 criteria with the levels of the 25 patients only fulfilling the Sepsis-2
criteria. These two patient subsets did not differ significantly with regard to age.

A total of 97 metabolites showed significant differences between Sepsis-3 and Sepsis-
2 patients; the observations are summarized in Table 1 and presented in more detail in
Table S3. For most of these metabolites, we observed a significant correlation between
the total SOFA score and corresponding systemic level, but only a small minority of the
97 identified metabolites also showed significant differences when comparing patients
with/without bacteremia and patients with Gram-negative versus Gram-positive infec-
tions (see Sections 3.3 and 3.4 below). We detected a total of 1039 metabolites including
227 amino acid metabolites, and this frequency of differing amino acid metabolites (35/227)
is significantly different from the frequency of significantly differing metabolites in the
other classes (62/805, Fisher’s exact test, p = 0.0003). Thus, it is unlikely that the high
number of differing amino acid metabolites is caused by coincidence.

http://jexpress.bioinfo.no/site
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Table 1. Differences in individual metabolites when comparing patients fulfilling the Sepsis-3
definition versus patients only fulfilling the Sepsis-2 criteria.

Subpathway Identity

AMINO ACIDS AND PEPTIDES (40/228 metabolites altered, 31 correlated with SOFA score)

Alanine and Aspartate Metabolism (2/9) N-acetylalanine, N-carbamoylalanine
Glutamate Metabolism (1/12) carboxyethyl-GABA

Histidine Metabolism (6/19)
1-methylhistidine, N-acetyl-1-methylhistidine *, imidazole lactate,

1-methyl-4-imidazoleacetate, 1-methyl-5-imidazoleacetate,
1-methyl-5-imidazolelactate

Lysine Metabolism (1/19) 5-(galactosylhydroxy)-lysine

Tyrosine Metabolism (4/) N-acetyltyrosine, 3-(4-hydroxyphenyl)lactate, phenol sulfate,
N-formylphenylalanine,

Tryptophan Metabolism (2/25) Kynurenine, indolelactate

Leucine, Isoleucine and Valine Metabolism (6/27)
beta-hydroxyisovaleroylcarnitine, 3-methylglutaconate, Isoleucine,

tiglylcarnitine (C5:1-DC), 3-hydroxy-2-ethylpropionate,
N-carbamoylvaline

Methionine, Cysteine, SAM and Taurine Metabolism
(3/26)

cysteine, N-acetylmethionine sulfoxide,
2,3-dihydroxy-5-methylthio-4-pentenoate (DMTPA) *

Urea cycle; Arginine and Proline Metabolism (5/24) Arginine, urea, homocitrulline, N2,N5-diacetylornithine, argininate

Polyamine Metabolism (4/9) N(1) + N(8))-acetylspermidine, Acisoga, N1,N12-diacetylspermine,
4-acetamidobutanoate

Guanidino and Acetamido Metabolism (1/4) guanidinosuccinate

Peptides (5/50) gamma-glutamylserine, isoleucylglycine, fibrinopeptide A (3–15) *,
fibrinopeptide B (1–11) * fibrinopeptide B (1–12) *

CARBOHYDRATE AND ENERGY (all increased, all associated with the SOFA score)

Carbohydrate (6/76) Lactate, ribonate, arabinose, arabitol/xylitol, galactonate, erythronate *,
N-acetylglucosamine/N-acetylgalactosamine

Energy metabolism (2/10) alpha-ketoglutarate, fumarate

LIPIDS (7 increased including the acyl cholines, 8 associated with thevSOFA score including the acylcholines)

Fatty Acid metabolites (10/145)

N-acetyl-2-aminooctanoate *, palmitoylcholine,
dihomo-linolenoyl-choline, linoleoylcholine * stearoylcholine *,

arachidonoylcholine, 12-HETE, N-stearoylserine *,
3-hydroxy-3-methylglutarate, glycocholate

NUCLEOTIDE (all 7 increased, six associated with the SOFA score)

Purine Metabolism, (3/20) Urate, allantoin, N6-succinyladenosine

Pyrimidine Metabolism (4/23) Orotidine, uracil, 3-(3-amino-3-carboxypropyl)uridine *,
5,6-dihydrothymine

COFACTORS AND VITAMINS (6/38; all 6 increased, and 5 were associated with the SOFA score)

Nicotinate and Nicotinamide Metabolism N1-methyl-2-pyridone-5-carboxamide,
N1-methyl-4-pyridone-3-carboxamide

Pantothenate and CoA Metabolism pantoate
Ascorbate and Aldarate Metabolism ascorbic acid 3-sulfate *, 2-O-methylascorbic acid

Vitamin B6 Metabolism Pyridoxate

ADDITIONAL (25 identified metabolites, two of them increased, 10 associated with the SOFA score)

Xenobiotics (29/275) 6 food components, 11 drug metabolites, 4 chemicals, 3 bilirubin
degradation products, 1 glycine conjugate, 4 unidentified

All individual metabolites showing a significant difference in ANOVA analysis are listed in the figure according
to their classification. The table presents the classification and identity. Metabolites showing decreased levels in
Sepsis-3 patients are presented in a green color (* The metabolite identity not confirmed based on a standard).
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The large majority of the 97 metabolites showed detectable levels for most patients;
72 metabolites reached detectable levels for at least 54 patients (>90% of the patients) and
nine additional metabolites reached detectable levels for at least 48 patients (>80%). Low
levels were detected especially for xenobiotic metabolites; 12 of the 16 metabolites with
detectable levels in less than 48 patients were classified as xenobiotic/drug metabolites.

We observed significant differences for 40 heterogeneous amino acid metabolites and
peptides, and the large majority of these metabolites showed increased levels in Sepsis-3
patients. The largest groups were histidine and leucine/isoleucine/valine metabolites
(six metabolites in each group), but five Urea cycle; Arginine and Proline Metabolism
metabolites were also significantly altered. Furthermore, xenobiotics constituted an addi-
tional large group, including six food components and also 11 drug metabolites reflecting
the cardiovascular comorbidity for a subset of our Sepsis-3 patients.

We did an additional pathway enrichment analysis, and even though amino acid
metabolites constituted the largest group of differing metabolites (Figure 1), additional
differences of potential biological importance were also identified:

• Several terms reflecting altered amino acid metabolism also received a high score in
this analysis, including a specific amino acid metabolism, as well as the urea cycle and
polyamine metabolism.

• The differences in fibrinogen cleavage peptides possibly reflect acute inflammation
and the acute phase reaction.

• There were differences in fatty acid metabolism (acyl cholines, eicosanoid).
• There was a difference in several xenobiotics and especially cardiovascular drugs; this

reflects the cardiovascular comorbidity of a Sepsis-3 patient subset.
• There were also differences in pentose/aminosugar metabolism and glycolysis/

gluconeogenesis/pyruvate metabolism suggesting that the carbohydrate metabolism
is altered together with the amino acid metabolism.

• Vitamin and cofactor metabolism showed differences in nicotinate and nicotinamide
metabolism as well as ascorbate and aldarate metabolism.

Taken together, the pathway enrichment analysis suggests that Sepsis-3 patients show
complex metabolic differences when compared with Sepsis-2/SIRS patients.

3.3. Comparison of Metabolomic Profiles for Sepsis Patients with and without Bacteremia:
Differences in Systemic Levels of Lipid and Amino Acid Metabolites Are Main Characteristics

As described in Section 1, the detection of bacteremia was significantly associated
with a relatively high total SOFA score; bacteremia should therefore be regarded as a sign
of more severe disease. For this reason, we also did a comparison of the metabolic profile
for the patients with and without bacteremia (30 patients in each of these two groups, see
Figure S1). These two patient groups/subsets differed significantly with regard to age;
patients with bacteremia were significantly older (median age 69.5 years, range 32–96 years)
than patients without bacteremia (median 60 years, range 20–84 years, Mann-Whitney
U-test, p = 0.035).

The results from the comparison of the 30 patients with and the 30 patients without
bacteremia are presented in detail in Table S4 and summarized in Table 2. We identified a total
of 51 heterogeneous metabolites, the two largest groups were 11 amino acid metabolites and
16 lipid metabolites. However, the 51 metabolites also included nine xenobiotic metabolites
that reflected the patients’ cardiovascular comorbidity, whereas the remaining 42 metabolites
probably reflect the effects of sepsis/bacteremia on the systemic metabolomics profile. Only
10 of these 42 sepsis-modulated metabolites showed increased levels in patients without
bacteremia, and this is significantly different from the equal distribution (i.e., 21 increased and
21 decreased) that would have been expected if these 42 metabolic differences were caused by
coincidence alone (binomial probability test, p = 0.0047).
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Table 2. Differences in individual metabolites between patients with and without bacteremia.

Subpathway Identity

AMINO ACIDS AND PEPTIDES (8 out of 11 metabolites correlated with SOFA

Lysine Metabolism N,N-dimethyl-5-aminovalerate
Tryptophan Metabolism Picolinate, 6-bromotryptophan

Methionine, Cysteine, SAM and Taurine Metabolism Cystathionine, alpha-ketobutyrate
Urea cycle; Arginine and Proline Metabolism N,N,N-trimethyl-alanylproline betaine (TMAP)

Gamma-glutamyl Amino Acid gamma-glutamylphenylalanine, gamma-glutamyl-2-aminobutyrate
Fibrinogen Cleavage Peptide fibrinopeptide B (1-11) *, fibrinopeptide B (1-12) *

Modified Peptides N,N-dimethyl-pro-pro

ENERGY (the metabolite was associated with SOFA score)

TCA Cycle 2-methylcitrate/homocitrate

LIPIDS (11 out of 16 correlated with SOFA score)

Fatty Acid Synthesis Malonylcarnitine
Short Chain Fatty Acid butyrate/isobutyrate (4:0)

Fatty Acid, Dicarboxylate decadienedioic acid (C10:2-DC) *
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Table 2. Cont.

Subpathway Identity

Fatty Acid Metabolism (Acyl Carnitine,
Monounsaturated) ximenoylcarnitine (C26:1) *

Fatty Acid Metabolism (Acyl Carnitine, Dicarboxylate) octadecanedioylcarnitine (C18-DC) *, octadecenedioylcarnitine
(C18:1-DC) *

Fatty Acid Metabolism (Acyl Carnitine, Hydroxy) 3-hydroxyoleoylcarnitine
Fatty Acid, Monohydroxy 2-hydroxydecanoate, 3-hydroxyhexanoate

Eicosanoid leukotriene B4

Progestin Steroids 5alpha-pregnan-3beta, 20alpha-diol disulfate,
pregnanediol-3-glucuronide

Corticosteroids cortisol 21-sulfate
Primary Bile Acid Metabolism Taurocholate

Secondary Bile Acid Metabolism taurochenodeoxycholic acid 3-sulfate

NUCLEOTIDES (none of the three metabolites associated with SOFA score)

Purine Metabolism, (Hypo)Xanthine/Inosine
containing Xanthine

Pyrimidine Metabolism, Uracil containing 5-methyluridine (ribothymidine)
Pyrimidine Metabolism, Thymine containing 3-aminoisobutyrate

COFACTORS AND VITAMINS (one metabolite associated with SOFA score)

Vitamin A Metabolism Retinol (vitamin A)

XENOBIOTICS (only 3 out of 19 metabolites associated with SOFA score)

Food Component/Plant methyl glucopyranoside (alpha + beta), vanillic acid glycine,
4-vinylguaiacol glucuronide

Drug—Analgesics, Anesthetics

3-(N-acetyl-cystein-S-yl) acetaminophen, 4-acetamidophenylglucuronide,
2-hydroxyacetaminophen sulfate *, 2-methoxyacetaminophen sulfate *,

2-methoxyacetaminophen glucuronide *, 3-(cystein-S-yl)acetaminophen *,
3-(methylthio)acetaminophen sulfate *

Drug—Cardiovascular Metoprolol, metoprolol acid metabolite *, alpha-hydroxymetoprolol,
warfarin, 6-hydroxywarfarin, 7-hydroxywarfarin, 10-hydroxywarfarin

Drug—Gastrointestinal Pantoprazole
Chemical 2-acrylamidoglycolic acid

All individual metabolites showing a significant difference in ANOVA analysis are listed according to their
classification; metabolites with increased levels in patients without bacteremia are marked in red (* The metabolite
identity not confirmed based on a standard).

The large majority of the 51 metabolites showed detectable levels for most of the
60 patients included in the study; 30 metabolites reached detectable levels for at least
54 patients and six additional metabolites reached detectable levels for at least 48 patients.
Low levels were detected especially for xenobiotic metabolites; 10 of the 15 metabolites
with detectable levels in less than 48 patients were xenobiotic/drug metabolites.

We did a pathway enrichment analysis based on the 51 metabolites showing signifi-
cantly different levels when comparing patients with and without bacteremia (Figure 2).
Some amino acid subpathways showed a high score (methionine, cysteine, taurine).
Two peptide subclasses (fibrinogen cleavage peptides, gamma-glutamyl amino acid) also
showed factors exceeding 2. The lipid metabolites were heterogeneous (Table 2), and
altered levels were especially seen for corticosteroids and progestin metabolites, but also
for eicosanoids and several fatty acid metabolic pathways. These relatively high scores for
a limited number of subclasses cannot be explained by coincidence alone.
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Figure 2. Pathway enrichment analysis based on the 51 metabolites that showed significant differences
when comparing patients with and patients without bacteremia. The abscissa axis refers to the
pathway enrichment factor that is defined in Section 2.3. (Abbreviations: AA, amino acid; Cof/Vit,
cofactors and vitamins; Ene, energy; Lip, lipids; Pep, peptide; Nuc, nucleotide; Xen, xenobiotics).

3.4. Comparison of Metabolomic Profiles for Patients with Gram-Negative and Gram-Positive
Infections: Only Weak Associations Are Detected

Several molecules derived from Gram-positive and Gram-negative bacteria differ in
their binding to pattern-recognizing receptors [24–26], and such differences may then lead
to differences with regard to the function (possibly including the metabolic regulation) of
receptor-expressing cells. For this reason, we compared the metabolomics profiles for pa-
tients with Gram-negative and Gram-positive infections and identified 39 metabolites that
differed significantly between these two patient subsets; 17 of them were xenobiotic metabo-
lites (mainly drug metabolites) and the other 22 biochemicals represent a heterogeneous
group of various endogenous metabolites (Tables S5 and S6). Patients with Gram-negative
infections were significantly older than the patients with Gram-positive infections (me-
dian age 73.5 versus 61 years, Mann-Whitney U-test, p = 0.43), and the Gram-negative
patients also included a higher frequency of patients with urinary tract infections (2 versus
26 patients, p < 0.00001). The frequencies of respiratory (1 versus 8 patients, p = 0.0257) and
soft tissue infections (none versus 11 patients, p = 0.0003) were significantly lower; a SOFA
score ≥2 was less common (13 versus 22 patients, p = 0.018) and respiratory failure was
more common (12 versus 23 patients, p = 0.004) for patients with Gram-positive infections.

An additional pathway enrichment analysis showed relative weak associations only
for a few pathways. Only four pathways showed an enrichment corresponding to a
factor exceeding 2, and all four pathways showed only a borderline enrichment with
progestin steroids 2.18, pregnenolone steroids 2.18, fatty acid metabolism (acyl carnitine,
dicarboxylate) 2.17 and aminosugar metabolism 2.17.

3.5. Metabolic Heterogeneity of Sepsis Patients: A Clustering Analysis Based on Amino Acid
Metabolites Showing a Strong Correlation with the Total SOFA Score

A total of 450 metabolites showed significant correlations with the total SOFA score
(i.e., p-value < 0.05, Pearson’s test) for our 60 patients, and many of the metabolites that
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differed significantly when comparing Sepsis-3 versus Sepsis-2 patients were also amino
acid metabolites which showed a correlation with the total SOFA score. To further elucidate
the associations between metabolomic status and disease severity/organ dysfunction, we
identified and characterized those metabolites that showed a particularly strong correlation
with the total SOFA score. We first identified all metabolites that showed a strong associa-
tion with total SOFA score, i.e., individual metabolites that showed a p-value < 0.005 and
correlation corresponding to >0.6 (Tables S7 and S8). We identified a total of 42 metabolites
that fulfilled both these criteria, and all these metabolites showed very low p-values that
were still regarded as significant after Benjamini-Hochberg evaluation for multiple testing.
Furthermore, the large majority of the 42 metabolites showed detectable levels for most
patients; only eight metabolites (including four amino acid metabolites) showed detectable
levels in less than 54 of the patients included in the study.

We did an unsupervised hierarchical clustering analysis based only on the 23 amino
acid metabolites included among these 42 highly significant metabolites (Figure 3,
Tables S7 and S8). Based on this analysis, we identified a lower main cluster/subset including
six patients, whereas the upper main patient cluster including the remaining 54 patients could
be further divided into two subclusters that included 26 (upper subcluster) and 28 patients
(lower subcluster), respectively. We then compared (i) the 26 patients in the upper sub-
cluster (i.e., the upper 26 patients in the clustering Figure 3) with (ii) the 34 patients in the
lower subcluster plus the six patients in the lower main cluster (i.e., the lower 34 patients
in the clustering Figure 3) (Table 3). The sample storage time did not differ between these
two patient subsets. The 34 lower patients showed an increased frequency of Sepsis-3 pa-
tients, an increased SOFA score, higher age and increased serum creatinine levels, but the
two patient subsets did not differ with regard to peripheral blood cell counts (total leuko-
cytes/neutrophils/monocytes/platelets), blood pressure (systolic/diastolic), respiratory rate
or the frequencies of individual organ failures as defined by the Sepsis-3 criteria at the time of
sampling (data not shown). Finally, all patients with cardiovascular comorbidity had Sepsis-3
and were included among the lower 34 patients. Thus, most Sepsis-3 patients show an amino
acid profile that differs from Sepsis-2 patients, but Sepsis-3 patients are heterogeneous and a
subset of them shows a profile similar to many patients who only fulfill the Sepsis-2 criteria.

Table 3. Subclassification of 60 patients fulfilling the Sepsis-2 criteria based on 23 amino acid
metabolites that showed a highly significant association with total SOFA score (i.e., Pearson’s test,
p < 0.005 and correlation factor > 0.60). The continuous variables are presented in the table as the
median and variation range. The Fisher’s test was used for comparison of continuous data and the
Mann-Whitney U test for analysis of continuous data.

Parameter Upper Subcluster (n = 26) Lower Subcluster Plus
Lower Main Cluster (n = 34) p-Value

Number of Sepsis-3 patients 8 27 0.002

Total SOFA score 1 (1–12) 3 (0–16) 0.0074

Number of patients with
cardiovascular comorbidity

0 9 0.0038

Age (rears) 54 (20–83) 72 (23–96) 0.0076
Peripheral blood neutrophil

count (×109/L)
12.9 (6.4–1.1) 10.6 (2.4–26.6) 0.55

Peripheral blood platelet
count (×109/L)

237 (58–568) 176 (24—407) 0.080

Serum creatinine (mmol/L) 66 (27–417) 121 (51–706) 0.0010

We identified a lower main patient cluster including six patients (Figure 1). The upper main patient cluster
included the remaining 54 patients who formed two subclusters; the upper subcluster included 26 patients and
the lower subcluster included the remaining 28 patients. The table presents a comparison of the upper 26 patients
(i.e., the upper subcluster) versus the lower 34 patients (i.e., the 28 patients in the lower subcluster plus the six
patients in the lower main cluster). The sample storage time did not differ between the two groups.
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Figure 3. Subclassification of sepsis patients based on amino acid metabolites that showed a strong
correlation with the total SOFA score. We performed an unsupervised hierarchical clustering analysis
based on 23 amino acid metabolites that showed a strong correlation with total SOFA, i.e., Pearson’s
correlation test with p-value < 0.005 and a correlation factor > 0.6. All metabolites showed detectable
levels for at least 10 patients The characteristics of each individual patient (fulfilling Sepsis-3 criteria
(black color/blocks), detection of bacteremia (red color/blocks) and total SOFA score) are indicated
to the right in the figure.
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We also compared the eight Sepsis-3 patients included in the upper subcluster (i.e.,
among the upper 26 patients) with the 27 Sepsis-3 patients included among the other
lower 34 patients (i.e., lower subcluster plus lower main cluster) (Table 4, Figure 3). We
emphasize that these data should be interpreted with great care because the upper sub-
cluster included a low number of Sepsis-3 patients. First, the two patient subsets did not
differ significantly with regard to the total SOFA score. Second, the age difference reached
only borderline significance, whereas the creatinine level was significantly higher for the
lower 27 patients. Third, these two Sepsis-3 patient subsets did not differ with regard to
peripheral blood cell counts (total leukocytes/neutrophils/monocytes/platelets), blood
pressure (systolic/diastolic), respiratory rate or the frequencies of individual organ failures
as defined by the Sepsis-3 criteria (data not shown). Finally, all patients with cardiovascular
comorbidity were included among the lower 34 Sepsis-3 patients.

Table 4. Subclassification of the 35 Sepsis-3 patients based on the unsupervised hierarchical clustering
analysis presented in Figure 3. The continuous data are presented as the median and variation range.
The Fisher’s test was used for comparison of continuous data and the Mann-Whitney U test for
analysis of continuous data.

Parameter Sepsis-3 Patients in the
Upper Subcluster (n = 8)

Sepsis-3 Patients in the
Lower Subcluster Plus

Lower Main Cluster (n = 27)
p-Value

Total SOFA score 3 (2–7) 4 (1–16) 0.32

Number of patients with cardiovascular
comorbidity 0 9 0.037

Empty row
Age (rears) 62 (34–66) 75 (23–96) 0.048

Peripheral blood neutrophil count (×109/L) 10.1 (6.4–41.1) 10.3 (3.4–26.6) 0.55
Peripheral blood platelet count (×109/L) 231 (58.538) 162 (24–407) 0.46

Serum creatinine (mmol/L) 77 (54–107) 130 (51–475) 0.0139

This hierarchical clustering was based on the 23 high-rated amino acid metabolites that showed a highly significant
association with the total SOFA score (i.e., Pearson’s test, p < 0.005 and correlation factor > 0.60). We identified
a lower main cluster including six patients, whereas the upper main patient cluster included the remaining
54 patients who formed an upper subcluster including 26 patients and a lower subcluster including 28 patients
(see Figure 3). The table presents a comparison of the eight Sepsis-3 patients among the upper 26 patients (i.e.,
the eight Sepsis-3 patients included in the upper subcluster of the main patient cluster in Figure 3) versus the
27 Sepsis-3 patients who were included among the other (lower 34 patients in Figure 3 (i.e., the 28 patients in the
lower subcluster plus the six patients in the lower main cluster)). The sample storage time did not differ between
the two groups.

3.6. A Minor Subset of Lipid Metabolites Show a Strong Correlation with Total SOFA Score

Although the majority of the 42 metabolites showing a strong association with the
total SOFA score were classified as amino acid metabolites (23 metabolites), a minor subset
of 12 lipid metabolites also showed a similar strong correlation with the total SOFA score,
i.e., p-value < 0.005 and a correlation factor > 0.6 (Tables S7 and S8). We did an unsuper-
vised hierarchical cluster analysis including all 60 patients based on these 12 metabolites
(Figure S2). This analysis identified two main patient clusters; the upper cluster included
17 Sepsis-3 patients among a total of 37 patients, whereas the lower main cluster included
18 Sepsis-3 patients among 23 patients (Fisher’s exact test, p = 0.0168). Even though these
lipid metabolites also identified a patient subset with a Sepsis-3 associated metabolic pro-
file, this difference between Sepsis-2 and Sepsis-3 patients was less significant than the
subclassification based on clustering of the amino acid metabolites (Section 3.4, Figure 3).
Thus, these observations further support the hypothesis that the development of organ
failure in patients with severe bacterial infections (i.e., Sepsis-3 patients) mainly alters the
systemic levels of amino acid metabolites.

The lipid metabolites that showed a strong correlation with the maximal total SOFA
score (i.e., p-value < 0.005, correlation factor > 0.6) included mainly pregnenolone and pro-
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gestin metabolites. We, therefore, compared the correlations with the maximal total SOFA
score for all 57 steroid hormone metabolites that were detected in our 60 patients (only one
estrogen metabolite analyzed) (Table S9). It can be seen that the 16 pregnenolone/progestin
metabolites differed from the other 41 steroid hormone metabolites and showed relatively
stronger associations with the total SOFA score (correlation > 0.5 for 11/16 metabolites
and >0.4 for all 16 metabolites) compared with the other 41 steroid hormone metabolites
(correlation > 0.5 1/41; Fisher’s exact test, p < 0.00005). Finally, Sepsis-3 patients included a
lower number of female patients compared with patients only fulfilling the Sepsis-2 criteria
(13/25 versus 16/35), but this difference did not reach statistical significance (p = 0.0659).

3.7. The Heterogeneity of Sepsis Patients Characterized by Unsupervised Hierarchical Clustering
Analysis Based on Heterogeneous Metabolites Showing Strong Association with Total SOFA Score

We identified 42 heterogeneous metabolites (including the 23 amino acid and 12 lipid
metabolites described above) that showed a strong association with the total SOFA score
(Table S7), i.e., p < 0.005 and correlation factor > 0.6 in the Pearson test. All these metabolites
showed a low p-value that remained significant after Benjamini-Hochberg correction,
but they represent only a minority of the metabolites that showed a p-value below 0.05
(statistical significance) and a correlation value > 0.5 when testing for correlation with the
total SOFA score (Table S8).

We did a clustering analysis based on the 42 highest ranked metabolites. This analysis
included only metabolites that reached detectable levels for at least 10 patients; the results
are shown in Figure 4 and the metabolite clustering is presented in detail in Table S7. Most
Sepsis-3 patients clustered close to each other also in this analysis. This is illustrated by
our classification of patients in two main subsets by separating them between two patient
subclusters; we then define an upper subset including 28 patients and another subset
including the 32 lower patients (Figure 4). These two patient subsets differed significantly
in the frequency of Sepsis-3 patients (8/28 in the upper and 27/32 in the lower subgroup,
Fisher’s test, p = 0.0033). However, the definition of two patient subsets was less obvious
for this 42 metabolite analysis than for the 23 amino acid clustering (Figure 3).

The clustering analyses presented in Figures 3 and 4 showed that some exceptional
Sepsis-3 patients had a metabolomic profile similar to Sepsis-2/SIRS patients. Notably, a
considerable overlap was obsrrved between the exceptional patients identified in clustering
analyses based on high-ranked amino acid metabolites and the 42 highest ranked metabo-
lites. The exceptional metabolites from the amino acid clustering were either included
among the exceptional patients or close in their neighboring cluster in the analysis based
on all 42 highest-ranked metabolites.

The clustering of the 42 metabolites is also presented in Table S7 and the following
conclusions can then be made from this overview:

• Only a minority of our sepsis patients showed increased levels of most of the 42 metabolites;
these patients clustered close to each other and represent the eight patients in the lowest
part of the cluster analysis.

• All the other 52 patients showed relatively low levels for several of the 42 metabolites,
and especially low levels of metabolites belonging to metabolite cluster B (middle left; see
Table S7), which seems to be a common characteristic both for the other Sepsis-3 patients
and patients only fulfilling the Sepsis-2 criteria. Cluster B is a small and heterogeneous
cluster including seven metabolites (four of them being amino acid metabolites).

• The patients in the upper part of the diagram also showed generally low levels for
metabolite clusters A and C. Cluster A (left) is a relatively large and heterogeneous
metabolite cluster whereas cluster C (middle right) includes 15 metabolites and 12 of
them are amino acid metabolites.

• Cluster D (right) includes only lipid metabolites and decreased levels were seen,
especially for the upper 12 patients.

We finally did a clustering based on 131 total SOFA-associated metabolites with
p-values < 0.01 and correlation factor > 0.5. This analysis also identified a small minority
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of Sepsis-3 patients with generally high metabolite levels, a heterogeneity of Sepsis-3,
with a majority of them showing a metabolic profile that was different from most patients
who only fulfilled the Sepsis-2 criteria, and a minority of Sepsis-3 patients who showed a
metabolic profile similar to most Sepsis-2/SIRS patients (data not shown).
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Figure 4. Subclassification of sepsis patients based on 42 top-ranked individual metabolites that all
show a strong correlation with the total SOFA score, i.e., p < 0.005 and correlation factor > 0.6 with the
Pearson’s test. All metabolites showed detectable levels for at least 10 patients. The characteristics
of each individual patient are indicated to the right in the figure: Patients fulfilling Sepsis-3 criteria
(black blocks), detection of bacteremia (red blocks) and total SOFA score (value). The metabolite
clusters are referred to as clusters A–D (see also Table S7). * The metabolite identity not confirmed
based on a standard.
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4. Discussion

In our present study, we conducted a broad metabolic characterization of patients
with Sepsis based on the Sepsis-2 and Sepsis-3 criteria. The study was based on a previous
clinical study of consecutive patients, and samples were derived when patients were
admitted to the hospital. We describe that most patients with Sepsis-3 (i.e., with organ
failure) have a systemic metabolic profile at admittance which differs from Sepsis-2/SIRS
patients. However, Sepsis-3 patients are heterogeneous with regard to their metabolic
profile, especially with regard to amino acid metabolites.

Patients with sepsis are very heterogeneous with regard to their clinical characteristics.
First, many patients develop sepsis as a relatively late complication following trauma
and/or surgical treatment [2,3,27–29]. Second, many of the sepsis patients also have severe
comorbidity or they show abnormalities in their immunocompetent/inflammatory cells
due to frailty and/or aging [30–35]. Third, sepsis can be caused by a wide range of various
microorganisms, including both bacteria and fungi, and bacterial molecules may then
interact with and modulate the functions of various immunocompetent cells [24–26]. Fi-
nally, the infection site may vary, and endothelial cell differences between various vascular
beds and/or the interactions between infection site cells and infiltrating immunocom-
petent/inflammatory cells in their common microenvironment may then differ between
various sites [36]. For these reasons, we investigated a well-characterized and relatively
homogenous group of sepsis patients, i.e., patients admitted to the emergency department
of a general hospital with sepsis caused by common bacterial agents and handled without
surgical interventions. The patients showed a (relatively limited) clinical heterogeneity, but
even early in their disease course they showed an additional metabolic heterogeneity, and
even exceptional patients with a high total SOFA score showed a systemic metabolic profile
similar to Sepsis-2/SIRS patients.

Our Sepsis-3 patients showed increased lactate levels, and their overall early mortality
was 11.7% (i.e., three Sepsis-3 patients). These observations would be expected for Sepsis-
3 patients, and they suggest that our 60 patients as well as our Sepsis-3 patients are
representative. However, due to this low mortality, detailed survival analyses were not
possible in our present study.

As described in the Results section, some of the metabolites showed undetectable
levels for certain patients, and in the statistical and bioinformatical analyses undetectable
levels were set equal to the lowest detectable level. This was done to avoid overestimation of
differences between compared groups. However, for the majority of metabolites, detectable
levels were observed for more than 90% of the patients, and this was also true for the
large majority of metabolites that differed significantly between Sepsis-3 and Sepsis-2
patients, between patients with and without bacteremia and for metabolites showing strong
associations with the total SOFA score.

We first compared patients with Sepsis-3 with patients who only fulfilled the Sepsis-2
criteria. Several metabolites showed significant differences, and amino acid metabolites
constituted the largest group of differing metabolites. Our Sepsis-3 patients also showed a
significant increase in several cardiovascular drug metabolites; these metabolites generally
showed no associations with the total SOFA score, and the increase in these metabolites
seem to reflect inclusion of a subset of elderly patients with Sepsis-3, bacteremia and cardio-
vascular comorbidity. Furthermore, we also did a second comparison of patients with and
without bacteremia. We then detected fewer metabolites that differed significantly between
these two groups; the differing metabolites included a larger subset of lipid metabolites but
again we observed increased levels of several cardiovascular drug metabolites.

Our two comparisons of (i) patients with Sepsis-3 versus Sepsis-2 and (ii) patients
with/without bacteremia showed only a minor overlap of the identified differing metabo-
lites, e.g., the sepsis comparison identified a large group of amino acid metabolites whereas
the bacteremia comparison identified several lipid metabolites. However, it should be
emphasized that both comparisons identified mainly metabolites that showed significant
correlations with the maximal total SOFA score, but with the exception of most of the
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identified xenobiotic metabolites that did not show significant correlations with SOFA
score/disease severity. In our opinion, these metabolites reflect age/comorbidity rather
than sepsis-induced metabolic modulation. This hypothesis is also consistent with our
observation that very few xenobiotic metabolites were included among the highest-ranked
metabolites with regard to correlation with the SOFA score.

We investigated correlations between metabolite serum levels at the time of admission
and total SOFA score. A large subset of metabolites showed significant associations with
the SOFA score, but we focused on the highest-ranked metabolites and these metabolites
also included a large number of amino acid metabolites. For these reasons, we have a focus
on high-ranked amino acid metabolites in our clustering analyses of metabolic profiles.

Modulation of systemic amino acid profiles are associated with prognosis in patients
with various forms of cancer [37–42]; and in patients with colorectal cancer decreased levels
of glutamine and histidine together with increased levels of phenylalanine are associated
with systemic signs of cancer-associated inflammation [37]. Thus, amino acids and/or
amino acid profiles are regarded as potentially useful biomarkers in several malignant
diseases, and our present results suggest that amino acid (profiles) should be further
investigated as possible prognostic markers also in patients with other inflammatory
diseases, including bacterial sepsis.

Our study was based on a previous clinical study including consecutive adult patients
requiring emergency admission to hospital due to suspected sepsis [21]. All patients had
bacterial infections and were relatively homogeneous with regard to bacterial etiology, and
only four of them had a predisposition for sepsis that required surgical evaluation. In
our opinion, our present study is therefore representative of medical patients with sepsis.
However, sepsis patients are heterogeneous [1,21,43], and our study may not be representa-
tive for patients with uncommon bacterial etiologies, sepsis in patients requiring surgical
intervention, sepsis after surgery or trauma, pediatric sepsis or sepsis in immunocompro-
mised patients. Finally, additional studies are also needed to clarify the possible impact
of the infection site on metabolomic profiles, although our observation that relatively few
and heterogeneous metabolites that differed between patients with Gram-negative (many
urinary tract infections) and Gram-positive infections (very few urinary tract infections)
suggests that the impact of the infection site on the metabolomic profiles may be limited.

Both Gram-negative and Gram-positive bacteria express molecules that show specific
binding to various receptors expressed by immunocompetent cells as well as other cells
involved in the regulation of inflammation, e.g., lipopolysaccharide that binds to toll-like re-
ceptor (TLR)4 and lipoteicoic acid that binds to TLR2 [24–26,44–54]. Thus, bacteria-derived
molecules can alter the function of inflammatory cells, probably including modulation
of their metabolism [43]. Despite the differences between with Gram-positive and Gram-
negative infections with regard to ligation of pattern-recognizing receptors, these two
patient subsets showed relatively small differences in their systemic metabolomic profiles.
The explanation for this is probably that organ failure has a much stronger impact on the
systemic metabolic regulation than the bacterial etiology.

Our clustering analyses identified patient subsets with Sepsis-3 associated and Sepsis-
2/SIRS associated metabolic profiles, and these patient subsets also differed with regard
to renal function/creatinine levels (Tables 3 and 4). The association between metabolic
profile and creatinine level was also observed when Sepsis-3 patients were investigated
alone (Table 4). Renal failure is associated with altered levels of a wide range of metabolites,
including altered amino acid metabolism [55–59]. The metabolic differences described in
our present study, including altered amino acid metabolism, may therefore at least partly
be caused by altered renal function.

Cellular reprogramming of metabolism is regarded as one of the mechanisms behind
the organ failure in patients with sepsis, but the effect of targeting these mechanisms will
possibly depend on the timing of such therapeutic interventions [60]. Our present study de-
scribes the metabolic status of Sepsis-3 patients at the time of hospital admission/diagnosis
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and may therefore contribute to a scientific basis for the design of early interventions that
target metabolic mechanisms behind the development of sepsis-associated organ failure.

Several previous studies comparing the metabolic profiles between sepsis patients and
healthy controls have described increased levels of amino acids or amino acid metabolites
in sepsis patients together with increased levels of metabolites reflecting mitochondrial
functions/energy metabolism (e.g., lactate) and altered regulation/function of the urea
cycle [43,60]. It should be emphasized that these different metabolic systems are interacting
as described and visualized by Hussain et al. [43]. Our study shows that several of these
markers, in addition, differ between Sepsis-3 and Sepsis-2 (SIRS) patients. However, several
amino acid metabolites showed a strong correlation with the maximal total SOFA score, and
this observation suggests that the early abnormalities in amino acid metabolism detected
at hospital admission are not only early markers of sepsis but also reflect the later clinical
course/maximal total SOFA score.

Therapeutic targeting of metabolism is now considered as a possible therapeutic
strategy in sepsis [61]. Animal studies suggest that metabolic intervention can decrease
the mortality in sepsis [62–64]; the same is suggested by subgroup analyses for some
studies in humans [43,61] but the results of randomized clinical studies of metabolic
interventions in sepsis have generally shown no significant improvement of patient survival
by this therapeutic strategy [61]. However, sepsis patients show a considerable clinical
heterogeneity [1], and our present study clearly illustrates that sepsis patients also show
a metabolic heterogeneity even when investigating a relatively homogeneous (but still
representative/consecutive) group of patients admitted to the emergency unit of a medical
department. The metabolic heterogeneity described in our present study represents a
difference in the metabolic context of therapeutic interventions, and such differences may
the influence the effects of therapeutic targeting of systemic metabolic regulation.

Our present study was based on a previous clinical study including consecutive adult
patients with suspected severe infections requiring emergency admission to hospital [21].
All patients had bacterial infections; the investigated group showed a limited heterogeneity
with regard to bacterial etiology, and only four of them had a predisposition that required
surgical evaluation. Our study is thus representative of medical patients with sepsis. How-
ever, it should be emphasized that our results may not be representative of sepsis patients
with uncommon bacterial etiologies or fungal infections, sepsis in patients requiring or
following surgical interventions, sepsis as a complication after trauma, pediatric sepsis or
sepsis in immunocompromised patients. Future studies have to clarify whether our present
results are representative also for (any of) these patient groups. There is also a need to
further investigate the possible impact of the infection site on systemic metabolic profiles in
sepsis, but the relatively few and heterogeneous metabolites that differed between patients
with Gram-negative (many urinary tract infections) and Gram-positive infections (very few
urinary tract infections) suggest that the impact of the infection site may be limited.

In a recent study, we compared the lipidomic profiles of Sepsis-3 and Sepsis-2 pa-
tients [65]. We could not detect any extensive lipidomic differences between these two
groups, although limited differences for certain subsets of lipid metabolites were ob-
served, especially for lysophosphatidylcholines and sphingolipids. In the present study,
we observed that Sepsis-3 and Sepsis-2 patients mainly differ with regard to amino acid
metabolites, and several amino acid metabolites also showed strong correlations with the
total SOFA score. Thus, when using a different methodological approach in the present
study we confirmed that Sepsis-3 and Sepsis-2 patients do not show extensive differences
with regard to their lipidomic profiles.

A minority of pregnenolone/progestin metabolites showed a strong correlation with
the maximal total SOFA score, and when analyzing the overall results for steroid hormone
metabolites (Table S9), pregnenolone/progestin metabolites showed generally stronger
associations with total the SOFA score than other steroid hormone metabolites. This
is probably due to stress/sepsis-induced modulation of steroid/cortisol metabolism as
described in several previous studies [66–68]. Sex-associated differences are unlikely as
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an explanation for these pregnenolone/progestin effects because Sepsi-3 and Sepsis-2
patients did not differ significantly with regard to male/female distribution; most of these
metabolites reached detectable levels both for males and females, and an inverse effect was
not observed for androgens. Thus, altered pregnenolone/progestin metabolic profiles seem
to be an early marker for the later severe clinical course of patients with bacterial sepsis.

5. Conclusions

Our present study shows that most Sepsis-3 patients have a different serum metabolomic
profile at the time of hospital admittance when compared with only Sepsis-2/SIRS patients
(i.e., without organ failure), especially with regard to amino acid metabolism. Several amino
acid metabolites are also among the highest-ranked metabolites with regard to association with
the total SOFA score. However, our analyses showed that Sepsis-3 patients are heterogeneous
with regard to their systemic metabolic profiles at the time of hospital admission. Metabolic
targeting to reduce the risk of severe sepsis-associated organ failure has been suggested [61].
Our present study suggests that sepsis patients are heterogeneous with regard to metabolic
regulation; and for this reason, one should possibly consider individualizing this treatment if
metabolic targeting is tried early after hospital admission.
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