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Regression models for linking patterns of
growth to a later outcome: infant growth
and childhood overweight
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Abstract

Background: Regression models are widely used to link serial measures of anthropometric size or changes in size
to a later outcome. Different parameterisations of these models enable one to target different questions about the
effect of growth, however, their interpretation can be challenging. Our objective was to formulate and classify
several sets of parameterisations by their underlying growth pattern contrast, and to discuss their utility using an
expository example.

Methods: We describe and classify five sets of model parameterisations in accordance with their underlying growth
pattern contrast (conditional growth; being bigger v being smaller; becoming bigger and staying bigger; growing faster v
being bigger; becoming and staying bigger versus being bigger). The contrasts are estimated by including different sets of
repeated measures of size and changes in size in a regression model. We illustrate these models in the setting of linking
infant growth (measured on 6 occasions: birth, 6 weeks, 3, 6, 12 and 24 months) in weight-for-height-for-age z-scores to
later childhood overweight at 8y using complete cases from the Norwegian Childhood Growth study (n = 900).

Results: In our expository example, conditional growth during all periods, becoming bigger in any interval and staying
bigger through infancy, and being bigger from birth were all associated with higher odds of later overweight. The highest
odds of later overweight occurred for individuals who experienced high conditional growth or became bigger in the 3 to
6 month period and stayed bigger, and those who were bigger from birth to 24 months. Comparisons between periods
and between growth patterns require large sample sizes and need to consider how to scale associations to make
comparisons fair; with respect to the latter, we show one approach.

Conclusion: Studies interested in detrimental growth patterns may gain extra insight from reporting several sets of
growth pattern contrasts, and hence an approach that incorporates several sets of model parameterisations. Co-efficients
from these models require careful interpretation, taking account of the other variables that are conditioned on.
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Background
The global epidemic of childhood obesity is an enor-
mous public health challenge [1]. One area of investiga-
tion to help understand how obesity develops is the
study of growth. It has been hypothesised that infancy
and, in particular, the first six months of life are sensitive
windows for later childhood obesity [2–4]. Evidence
from observational studies appears compelling. For

example, the most recent systematic review reported
consistent evidence of positive associations of both in-
fant weight gain from birth to 24 months and size at 5
and 6 months with later body size at 5-13y [5]. However,
this review also highlighted the difficulty of comparing
results across studies, in part because of the different
statistical models used, and concluded that more re-
search is needed to establish whether particular ages are
more strongly linked to later body size.
Almost all studies included in the review used a re-

gression model [5]. One difficulty in comparing results
is due to the different ways in which each study
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parameterised the model. For example, some included
size at each age while others included changes in size;
many studies reported coefficients conditional on past
measures of size but a few have also reported coeffi-
cients conditional on future changes in size. The inter-
pretation of coefficients from models containing
repeated exposures needs to account for the condition-
ing which is often ignored and can be challenging [6, 7].
For example, a common line of interpretation is:
“changes in size in interval X was associated with Y, in-
dependent of changes in other intervals” [8]. While cor-
rect, such interpretation doesn’t reflect the contrast in
growth patterns that is targeted when repeated measures
are included in a regression model. To illustrate, the in-
terpretation of the coefficient for birth weight in a model
that includes changes in weight from birth to 6 months
and 6 to 12 months, compares individuals who were
heavier at birth, 6 and 12 months against individuals
who were lighter at birth, 6 and 12 months, hence it asks
a cumulative question, what is the effect of being bigger
from birth to 1y?
Many different growth pattern contrasts can be specified

using model parameterisations and re-parameterisations,
each targeting a different question. The conditional growth
parameterisation predominates the growth literature [9],
such that investigators often ignore other parameterisa-
tions. If the objective is to understand detrimental growth
patterns, then given the large variability in growth trajec-
tories among children [10], it seems sensible to implement
an analysis strategy that explores the effect of several types
of growth pattern, eg; being bigger versus being smaller,
growing faster versus being bigger. By asking different ques-
tions we may get different answers [11], which may provide
new insights.
Our objectives were to formulate and describe several

model parameterisations to link patterns of infant
growth with later childhood overweight, and classify
each parameterisation in a way that reflects the under-
lying growth pattern contrast that is tested. We illustrate
the interpretation of these models in an expository ana-
lysis using data from the Norwegian Childhood Growth
study (NCG) [12]. We aim to describe the utility of this
common approach more fully than has been done previ-
ously, and draw attention to some of the substantive and
statistical issues to consider for future work in this area.

Methods
The example dataset and data preparation
The NCG is a national population-based retrospective
cohort study of 3180 singleton 3rd grade pupils (mean
age 8.3y; range: 7.3 to 9.6y) born in 2002 [12]. Measures
of length/height and weight from routine examinations
scheduled at birth and at the age of 6 weeks, 3, 6, 9, 12,
15, 18 and 24 months, and 3, 4 and 6 years were

extracted from the Norwegian Medical Birth Registry and
School records. We use data from birth to 24 months
(exposure period) and the 8 year clinic (outcome) as our
example. Overweight at the 8y clinic, defined using the
age and sex specific International Obesity Task Force cri-
teria (IOTF) [13], was used as the outcome.
The NCG dataset is unbalanced: while there was a tar-

get age for each of the routine clinics, some children
were measured earlier and some later (see Additional file
1: Figure S1). The regression approach used here re-
quires a balanced or fixed measurement schedule. To
adjust each observation to its nearest target age we used
a linear interpolation on the z-score scale-each length
and weight observation was converted to an age and sex
specific z-score using internally generated reference cen-
tiles estimated with the LMS (Lambda, Mu, Sigma)
curve method [14].
Weight-for-length z-scores at birth, 6 weeks, 3, 6, 12

and 24 months were used as the core set of exposures
and calculated using the following equation [15]:

z wtt jlentð Þ ¼ z wttð Þ−rt :z lentð Þ
ffiffiffi

1
p

−r2t

where z(wtt|lent) is the weight-for-length z-score at tar-
get age t, z(wtt) and z(lent) are the z-scores for weight
and length respectively at age t, and rt is the correlation
coefficient between weight and height at age t. For ease
of illustration, we restrict the analysis to the 900 children
with complete data.

Description of models
We describe five sets of model parameterisations that
target five types of growth pattern contrast. The parame-
terisations are based on incorporating different sets of
repeated measures of size and changes in size into the
regression equation. Equations (1) to (8) describe the
parameterisations and a graphical illustration of the con-
trast in growth patterns captured by each coefficient is
provided in Fig. 1a-e. For pedagogy, the constant term
has been removed from the equations below. Likewise,
we omit covariables from the example analysis in the
results section to make the inter-relations among the
different parameterisations clear (see the notes contained
in Additional file 1).

Growth pattern (a). Conditional growth
Conditional size and conditional growth are the same
thing, henceforth we use the term conditional growth.
These models examine growth in an interval conditional
on earlier growth or size. Future size is not conditioned
on and so we compare patterns of growth only up to the
end of the growth period of interest (Fig. 1a). It thus
asks a prospective question at each age: given earlier
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size, what can we learn about the outcome given current
size (or growth in the most recent interval)? The model
linking conditional growth from birth to 6 weeks to the
outcome is:

E Yð Þ ¼ β0z0 þ β1:5z1:5 ð1Þ

where E(Y) is the expected value of the outcome, in our
example this is the logit link function for overweight at 8y,
and β1.5 is the regression coefficient for the association be-
tween conditional growth from birth to 1.5 months
(6 weeks) and the outcome. In our example we use the z-
scores zt at each time point t months as the exposures. A
sequence of models is thus fitted and the most contem-
porary coefficient interpreted, capturing growth condi-
tional on the past. By a similar logic to eq. (1), β3 in eq. (2)
below captures the effect of conditional growth from
6 weeks to 3 months:

E Yð Þ ¼ β0z0 þ β1:5z1:5 þ β3z3 ð2Þ

By construction each period of conditional growth is
uncorrelated with all other periods, as has been de-
scribed [9, 11] and shown in Additional file 1: Table S1.

Growth pattern (b). Being bigger versus being smaller
There is evidence that childhood obesity may originate
in-utero [16], this set of parameterisations draw atten-
tion to this by targeting a pattern of being bigger versus
being smaller from birth for different lengths of time
through infancy (Fig. 1b). The model to link being bigger
from birth until 6 weeks with the outcome is:

E Yð Þ ¼ γ0z0 þ γ1:5 z1:5−z0ð Þ ð3Þ

Here, the coefficient for birth size, γ0, captures the as-
sociation with being bigger from birth to 6 weeks versus
being smaller up to 6 weeks, i.e., it equals the mean dif-
ference in the outcome among those one z-score higher
at birth controlling for all future changes in size up to
6 weeks. By the same principle, γ0 in the following
model captures the association between being bigger
from birth to 3 months of age and the outcome:

E Yð Þ ¼ γ0z0 þ γ1:5 z1:5−z0ð Þ þ γ3 z3−z1:5ð Þ ð4Þ

Growth pattern (c). Becoming bigger and staying bigger
One possible pathway for overweight is early weight gain
that persists through infancy [2]. This parameterisation
tries to capture this by examining a pattern of becoming
bigger in a given period and staying bigger through the
rest of infancy (Fig. 1c). It thus considers permanent dif-
ferences in size. The model that captures this contrast is:

Fig. 1 Schematic illustration of the contrasts in growth patterns tested
by each of the five models (a) to (e). The lines plot the difference in
weight for length z-score at each age. The thin separation between
trajectories is done for clarity; in reality they should be superimposed
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E Yð Þ ¼ δ0z0 þ δ1:5 z1:5−z0ð Þ þ δ3 z3−z1:5ð Þ þ δ6 z6−z3ð Þ
þ δ12 z12−z6ð Þ þ δ24 z24−z12ð Þ

ð5Þ
Where δ1.5 to δ24 capture the association of becoming

one z-score bigger in each respective interval and main-
taining that extra size until 24 months.

Growth pattern (d). Growing faster versus being bigger
This set of parameterisations examines the association
of change in size in each interval, comparing against
children of the same future size (Fig. 1d). It asks the
question, among those of the same future size, does
starting smaller with subsequent larger increases in size
matter? The coefficients in this set of models are actually
a test of whether conditional growth is any better or
worse than being bigger, and so we loosely call this set of
contrasts growing faster versus being bigger. The model
to test whether conditional growth from birth to 6 weeks
is any better or worse than being bigger from birth to 6w
can be written as:

E Yð Þ ¼ η0 z1:5−z0ð Þ þ η1:5z1:5 ð6Þ
Here, η0 is equal to the difference between β1.5 in eq. (1)

(conditional growth from birth to 6 weeks) and γ1.5 in eq.
(3) (being bigger from birth to 6 weeks), i.e. η0 = β1.5 − γ0
(this can be seen graphically by looking at the contrasts
illustrated in Fig. 1a, b & d, and can be shown alge-
braically - see the online supplementary material). A posi-
tive coefficient would mean that conditional growth from
birth to 6 weeks carries a higher risk of the outcome than
being bigger from birth to 6 weeks. By the same principle,
the coefficient to test for a difference between conditional
growth from 6w to 3 m and being bigger from birth to 3 m
is captured by η1.5 in the following model:

E Yð Þ ¼ η0 z1:5−z0ð Þ þ η1:5 z3−z1:5ð Þ þ η3z3 ð7Þ

Growth pattern (e). Becoming and staying bigger versus
being bigger
In this model we compare growth patterns of becoming
and staying bigger through infancy with patterns of being
bigger from birth throughout infancy (Fig. 1e). It can be
estimated using the following:

E Yð Þ ¼ θ0 z1:5−z0ð Þ þ θ1:5 z3−z1:5ð Þ þ θ3 z6−z3ð Þ
þ θ6 z12−z6ð Þ þ θ12 z24−z12ð Þ þ θ24z24 ð8Þ

where each coefficient for the change in size variables,
θ0 to θ12, captures the difference between a pattern of
becoming bigger and staying bigger in each interval ver-
sus a pattern of being bigger. For example, θ0 in eq. (8) is
equal to δ1.5 in eq. (5) of the becoming and staying bigger
model minus γ0 in the being bigger model that includes

changes in all intervals up to 24 months (see Fig. 1b, c & e
and online supplementary material for proof). A positive
coefficient would mean that becoming bigger in a period is
worse than just being bigger from birth.

Scaling associations across periods
We also investigate the issue of scale which is important
to make comparisons across periods and between growth
patterns fair. For pedagogical reasons we describe and re-
port these details in the results section.

Results
Example using the NCG data
Table 1 shows the results for each of the five models using
the NCG data. Growth in weight-for-length during all pe-
riods conditional on earlier size (conditional growth) was
positively associated with later overweight with the largest
association occurring in the 3 to 6 m period (OR: 2.1;
95 % CI: 1.5 to 2.9). Being bigger in weight for length from
birth up to any age in infancy was positively associated
with later overweight and the odds were progressively
higher the longer the interval of being bigger from birth-
the odds ratio for later overweight for being one z-score
bigger from birth to 24 m was 2.4 (95 % CI: 1.8 to 2.4). A
growth pattern of becoming bigger in weight for length in
any interval and staying bigger through infancy was also
associated with a higher odds of later overweight. The lar-
gest association occurred for gains that persisted from the
3–6 month period (OR: 2.5; 95 % CI: 1.8 to 3.6).
In the models that compare conditional growth in each

interval against patterns of being bigger, or put another
way, that ask about patterns of starting smaller to become
the same size, there was evidence that conditional growth
from 12 to 24 months was associated with a lower odds of
later overweight compared to a pattern of being bigger
from birth to 24 months. With the exception of the 3 to
6 month period, the results were in the same direction for
the other periods, ie, growing faster had a lower risk than
being bigger, but were statistically equivocal. Finally, the
results were also equivocal for all intervals in the param-
eterisation that compared becoming and staying bigger
against being bigger from birth to infancy, or put another
way, comparing whether being smaller with later growth
in an interval carries a different risk of later overweight to
those of the same future size who were bigger at birth. A
note on interpretation: the 12–24 month coefficient in this
model is the same as the 12–24 month coefficient in the
growing faster v being bigger model because they are the
same contrast (Table 1 and Fig. 1d and e).

Sensitive periods and the issue of scale: using residuals to
estimate the growth effects
A common question is whether particular periods of
growth or extra size are more strongly linked to the
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outcome, so called sensitive periods. It is useful to think
about what we would expect to see in these models if
there was a sensitive period. When the outcome is a
later version of the exposure and the correlation be-
tween measures decreases the further apart in time the
exposures are measured, as is the case in our example
(see Additional file 1: Table S1), then the closer the ex-
posure is in time to the outcome, the more likely that
the prediction will be stronger. This has been called the
horse-racing principle [17, 18] - it is easier to pick the

winner when the horses are closer to the finish line. For
the conditional growth and being bigger models which
ask questions about particular periods but do not condi-
tion on the future, we might therefore expect to see a
monotonic pattern of stronger associations as the period
of growth or extra size gets closer towards the end of in-
fancy. If there is a sensitive period(s) we might expect
the coefficient to deviate from this monotonic pattern
across periods. For the other models we might expect
the coefficients to be similar across periods if there are
no sensitive periods.
Returning to the NCG data, there was a weak sugges-

tion that growth in the 3 to 6 month interval may be
sensitive for later overweight, and in particular, a growth
pattern where children become bigger from 3 to
6 months and stay bigger through infancy – this pattern
had the highest OR (Table 1). However, two issues are
unaddressed in this analysis. First, formal comparisons
between periods lack power due to the sample size, so
we cannot exclude sampling error. Second, it is import-
ant to try to make comparisons across periods fair. In
our example the periods are of unequal duration, so for
example, a unit z-score increase between 3 to 6 months
is only half the z-score velocity of a unit z-score increase
from birth to 6 weeks. Transforming to z-score velocities
would resolve this but fails to deal with another poten-
tial related issue: a unit increase in velocity may not
mean the same thing in each period in population terms
because there are periods of growth when population re-
ordering or centile crossing is naturally greater. This is
illustrated by using residuals and fitting the models in
two steps. For example, for the conditional growth con-
trasts, we first estimate each individual’s conditional
growth scores by saving the residuals from a series of
models regressing size at each age on all earlier sizes. A
second analytical model is then fitted regressing the out-
come on these residuals (conditional growth scores).
Figure 2 overlays the distributions of the conditional
growth scores for the birth to 6 week and 3 to 6 month
periods in the NCG. The narrower distribution and
smaller standard deviation for the 3 to 6 month period
(0.8 v 0.5z) implies a period where we expect less condi-
tional growth - a z-score increase in conditional growth in
this period thus means 0.8/0.5 = 1.6 times more in
population terms than a z-score increase from birth
to 6 weeks. A fairer comparison might therefore be
to standardise the residuals by dividing by their
standard deviation.
The conditional nature of all of the models described

here means it is possible to estimate all of the growth
contrasts in two steps and hence standardise all of the
coefficients in this way. Table 2 describes how to calcu-
late the residuals for the birth to 6 week period in each
model, with straightforward extension to other periods.

Table 1 Odds ratios for overweight per z-score increase in
weight for length for each of the five sets of models. The ORs
are also adjusted for gestational age and sex

OR 95 % CI p

(a) Conditional growth:

Birth to 6w 1.40 1.13, 1.73 0.002

6w to 3 m 1.35 1.00, 1.81 0.049

3 to 6 m 2.07 1.48, 2.89 <0.001

6 to 12 m 1.56 1.15, 2.10 0.004

12 to 24 m 1.53a 1.15, 2.02 0.003

(b) Being bigger:

At birth 1.31 1.10, 1.56 0.003

birth to 6w 1.59 1.28, 1.98 <0.001

birth to 3 m 1.73 1.37, 2.18 <0.001

birth to 6 m 1.95 1.53, 2.49 <0.001

birth to 12 m 2.09 1.63, 2.69 <0.001

birth to 24 m 2.35 1.80, 3.07 <0.001

(c) Becoming bigger and staying bigger:

Birth to 6w 2.11 1.62, 2.75 <0.001

6w to 3 m 1.87 1.35, 2.59 <0.001

3 to 6 m 2.51 1.77, 3.56 <0.001

6 to 12 m 1.86 1.35, 2.56 <0.001

12 to 24 m 1.53a 1.15, 2.02 0.003

(d) Growing faster v being bigger:

Birth to 6w 0.88 0.72, 1.07 0.19

6w to 3 m 0.78 0.58, 1.06 0.11

3 to 6 m 1.06 0.74, 1.52 0.75

6 to 12 m 0.74 0.53, 1.06 0.099

12 to 24 m 0.65b 0.47, 0.90 0.009

(e) Becoming bigger v being bigger:

Birth to 6w 0.9 0.73, 1.10 0.30

6w to 3 m 0.8 0.58, 1.08 0.15

3 to 6 m 1.07 0.74, 1.53 0.72

6 to 12 m 0.79 0.56, 1.12 0.19

12 to 24 m 0.65b 0.47, 0.90 0.009
ait is no coincidence that these two coefficients are exactly the same, they are
the same contrast (see Fig. 1a & c)
bit is no coincidence that these two coefficients are exactly the same, they are
the same contrast (see Fig. 1d and e)
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Table 3 shows the results incorporating this standard-
isation. Standardising by the residual standard deviation
had the strongest effect on the 3 to 6 month period,
drawing the coefficients more towards those for the
other periods compared to the unstandardised results.
Now the 3 to 6 month period appears less convincing as
a sensitive window, although again, the results are
equivocal and a larger sample size is required. One
aspect to note is that in using this standardisation we
lose the tidy algebraic relations where models (d) and (e)
can be re-expressed as a sum of models (a) and (b), and
(b) and (c) respectively.

Discussion
We have described five sets of model parameterisations
for linking patterns of infant growth with later childhood
overweight. The coefficients from these models have a
conditional interpretation, and the general approach can
be called conditional growth modelling (not to be con-
fused with the conditional growth model). The condi-
tioning means that the approach contrasts growth
patterns or profiles rather than absolute trajectories. For
example, in Fig. 1b the comparison is between patterns
of being bigger against patterns of being smaller, not an

absolute trajectory of being big versus an absolute trajec-
tory of being small.
Most reports of early growth effects have used a form

of the conditional growth parameterisation. The idea is
to compare a child’s growth in an interval against the
growth of other children who up until that interval
shared a similar growth trajectory, or to compare like
for like. We have presented four additional growth pat-
tern contrasts. These models target questions about pat-
terns of being bigger from birth up until various ages in
infancy, patterns of growth characterised by becoming
bigger and staying bigger through infancy, and lastly
about whether growing faster or becoming bigger is any
better or worse than being bigger. While at least two of
these parameterisations have been used before, we were
unable to find an explicit interpretation of them in terms
of the underlying growth pattern contrast [11] and so
have tried to classify and offer an interpretation of each
in a way in which we feel expresses the substantive re-
search question that each targets.
A debated controversy with this approach concerns

how a coefficient in a model conditioned on a repeated
measure can be re-expressed to reflect either size or
growth. A notable example concerns the developmental
origins of health and adult disease hypothesis and the
role of birth weight in a model that also conditions on
later size [19]. In such a model, a one unit increase in birth
weight conditioned on future weight also means a one unit
decrease in growth. The question of whether this model
implicates size at birth or growth from birth cannot be an-
swered because there is no counterfactual- conditioned on
later size, we cannot change earlier size without also chan-
ging growth. However, we can interpret the coefficient for
birth weight in this model without ambiguity by describing
it as a growth pattern contrast, so in this example, it is the
association with being born bigger but growing less to be-
come the same future size – this is the inverse of our
growth pattern (d) that compares conditional growth with
being bigger. By always interpreting these models with
respect to the conditioning as we have attempted, the con-
troversies surrounding re-parameterisations and dual inter-
pretations can be reconciled [11].
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Fig. 2 Density histogram of the conditional growth z-scores for the
birth to 6 week and 3 to 6 month period

Table 2 Illustration of the models used to estimate the residuals for each of the growth pattern contrasts for the birth to 6 week
period. The outcome can then be regressed onto the residuals in a second analytical modela

Model Model to estimate residual for the birth to 6 week periodb

(a) Conditional growth: z1.5, i = λ0 + λ1z0,i + εi

(b) Being bigger: z0, i = η0 + η1(z1.5,i − z0,i) + εi

(c) Becoming bigger and staying bigger: (z1.5, i − z0, i) = λ0 + λ1z0 + λ2(z3 − z1.5) + λ3(z6 − z3) + λ4(z12 − z6) + λ5(z24 − z12) + εi

(d) Growing faster versus being bigger: (z1.5, i − z0, i) = λ0 + λ1z1.5 + εi

(e) Becoming bigger versus being bigger: (z1.5, i − z0, i) = λ0 + λ1(z3 − z1.5) + λ2(z6 − z3) + λ3(z12 − z6) + λ4(z24 − z12) + λ5z24 + εi
aThe residuals εi are divided by their standard deviation prior to being entered into the analytical model ie. εi

SD εið Þ . In our example the analytical models were also
adjusted for sex and gestational age
bwhere zt, i is the z-score for weight for length at age t months for subject i, and εi is the residual for child i
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Nonetheless, the utility of a model re-parameterisation
might be questioned given that the information in the
model remains the same, it has just been reshuffled
and presented in a different way. Despite this, a re-
parameterisation allows a different pattern of growth
to be compared and so targets a different question.
Reporting and comparing a variety of growth patterns
might ensure that important aspects of interpretation
are not lost since it is not intuitive to re-express the

coefficients from one model to reflect a different
growth pattern contrast [11]. Further there is substan-
tial between-child variability in early growth trajector-
ies, and in particular, variability in growth trajectories
among children who become obese [10]. A fuller un-
derstanding of detrimental growth patterns or in our
example, of the origins of childhood obesity in early
growth, may thus be better achieved by analyses that
investigate several types of pattern. While our ex-
ample was expository, the wider range of models
allowed us to consider associations with a range of
growth patterns and put them in context with each
other. This meant that attention was not solely fo-
cused on intervals of postnatal growth, but also con-
sidered patterns where babies are born bigger.
It was not our intention to prescribe a framework of

parameterisations for future analyses; the models we
present are just one of many possible sets of parameteri-
sations for exploring growth. For example, interactions
between periods and the notion of catch up growth
among smaller babies, the association of being bigger
over different intervals of infancy instead of just from
birth, and being bigger conditional on past and future size
[20] could also be parameterised, along with non-linear re-
lationships and questions about whether there is a thresh-
old of weight gain that is particularly detrimental.
Multilevel models (MLMs) are widely used in studies

of growth effects. The approach involves fitting an MLM
to estimate each individual’s growth trajectory as a func-
tion of age (growth model), then regressing the outcome
on the MLM-based predicted individual-level values
(analytical model). They have the advantage of dealing,
to some extent, with several of the statistical issues in-
herent to analyses of growth data such as missing data,
irregular measurement schedules and measurement
error. Often however, the analytical model is then para-
meterised as a conditional growth model [21, 22], and so
asks the same substantive question about conditional
growth. Nonetheless, other parameterisations, such as
those here, could be formulated within an approach that
uses an MLM as a first step.
Non-linear models can offer a different type of param-

eterisation and thus ask a different question. For ex-
ample, the SITAR model [23, 24] describes a trajectory
using three parameters that correspond to size, velocity
and developmental tempo. A unique feature of the
SITAR model is that by providing a parameter for the
age scale it acknowledges that individuals grow on differ-
ent developmental trajectories and thus allows develop-
mental features such as age at adiposity rebound to vary
across individuals. Latent growth models also offer a
substantively different comparison. These models group in-
dividuals based on their underlying (latent) trajectory and
so compare absolute rather than conditional trajectories.

Table 3 Odds ratios for overweight per z-score increase in weight
for length for each of the five sets of models, as estimated using
standardised residuals for each of the exposures. The ORs are also
adjusted for gestational age and sex

OR 95 % CI p

(a) Conditional growth:

Birth to 6w 1.32 1.10, 1.57 0.002

6w to 3 m 1.19 1.00, 1.42 0.049

3 to 6 m 1.48 1.24, 1.78 <0.001

6 to 12 m 1.3 1.09, 1.56 0.004

12 to 24 m 1.32a 1.10, 1.58 0.003

(b) Being bigger:

At birth 1.31 1.10, 1.56 0.003

birth to 6w 1.45 1.22, 1.73 <0.001

birth to 3 m 1.51 1.27, 1.81 <0.001

birth to 6 m 1.64 1.37, 1.97 <0.001

birth to 12 m 1.72 1.43, 2.07 <0.001

birth to 24 m 1.83 1.52, 2.22 <0.001

(c) Becoming bigger and staying bigger:

Birth to 6w 1.71 1.41, 2.07 <0.001

6w to 3 m 1.42 1.18, 1.71 <0.001

3 to 6 m 1.62 1.35, 1.95 <0.001

6 to 12 m 1.41 1.18, 1.69 <0.001

12 to 24 m 1.32a 1.10, 1.58 0.003

(d) Growing faster v being bigger:

Birth to 6w 0.89 0.75, 1.06 0.19

6w to 3 m 0.87 0.73, 1.03 0.11

3 to 6 m 1.03 0.86, 1.23 0.8

6 to 12 m 0.86 0.72, 1.03 0.01

12 to 24 m 0.79b 0.66, 0.94 0.01

(e) Becoming bigger v being bigger:

Birth to 6w 0.91 0.76, 1.09 0.30

6w to 3 m 0.88 0.74, 1.05 0.14

3 to 6 m 1.03 0.87, 1.23 0.7

6 to 12 m 0.89 0.75, 1.06 0.19

12 to 24 m 0.79b 0.66, 0.94 0.01
ait is no coincidence that these two coefficients are exactly the same, they are
the same contrast (see Fig. 1a & c)
bit is no coincidence that these two coefficients are exactly the same, they are
the same contrast (see Fig. 1d and e)
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Latent class models are data driven - the comparison is de-
rived from the data rather than designed by the analyst, so
comparisons may not capture any a priori research ques-
tion. Much may be gained by considering a framework of
different approaches and models [6].
When the interest is in sensitive periods, it is import-

ant to consider how to make comparisons across periods
fair. The use of z-scores of size and/or z-score velocities
will not account for any differences in the level of popu-
lation re-ordering or centile crossing in each period.
Using standardised residuals as illustrated here can
control for this. However, it is important to think
about whether this sort of standardisation is appropri-
ate as it may affect the conclusions drawn from the
study. Another aspect which may warrant consider-
ation is measurement error, which is likely to depend
on age, and therefore could bias comparisons between
periods.
Studies interested in windows of growth require a

sample size and measurement schedule that allow pe-
riods of interest to be examined with sufficient power
and minimal bias. Missing data can reduce power and
cause bias. In our example, the sample size was substan-
tially reduced when restricting to complete cases. Several
options exist for dealing with missing data in a more
principled way, for example, modelling individual trajec-
tories as a first step using an MLM, or formulating the
models in a structural equation or path analysis frame-
work then using full information maximum likeli-
hood to estimate the parameters. There is no good
reason to only work with the complete cases except
for simplicity (as we did in this expository example).
Lastly, larger samples are also needed for narrower
time windows because of the effects of model collin-
earity, measurements close in time tend to be more
correlated and this will cause larger standard errors.

Conclusions
Much attention has duly been given to the statistical is-
sues that arise in the analysis of growth exposures; while
clearly important, it is also prudent to consider the sub-
stantive question(s) that underpin the model(s) adopted.
As we have shown, different parameterisations of a regres-
sion model offer one way of targeting other substantive
questions concerning growth. Our interest was in the util-
ity of re-parameterisations in this setting, alternative ques-
tions about growth to those we have described are likely
to be asked, and will require different parameterisations
and input from experts in other fields. Nonetheless, the
general approach of considering a range of parameterisa-
tions may have added utility for research into early growth
and later outcomes above and beyond an analysis that
only considers the classic conditional growth model.
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